I had the great honor of speaking to the Japanese Parliament on September 27th, 2024, as part of the International Crisis Summit 6. I did this together with other summit participants to inform the Japanese public and lawmakers about the dangers of genetic vaccines against COVID-19, in an attempt to stop the replicon mRNA vaccine ARCT-154 from being released in Japan in October.
My speech was focused on the autoimmune inflammatory reactions caused by the COVID-19 genetic vaccines. Owing to the event’s crucial importance, I made the decision to include references in every sentence, in order to support every point with scientific findings from peer-reviewed literature. Moreover, since I was going to submit the document to the Japanese Parliament, I made the decision to read each word of it for transparency.
I could have spent hours presenting the extremely concerning findings of the scientific studies that demonstrate the severely unfavorable risk/benefit profile of the genetic vaccines against COVID-19, but each speaker was given 10-12 minutes.
Below you can find the full list of references mentioned in the video:
Aarstad, J., and Kvitastein, O. A. (2023). Is There a Link between the 2021 COVID-19 Vaccination Uptake in Europe and 2022 Excess All-Cause Mortality? Asian Pacific Journal of Health Sciences 10, 25–31. doi: 10.21276/apjhs.2023.10.1.6
Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., et al. (2021). Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer–BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. The Journal of Immunology 207, 2405–2410. doi: 10.4049/jimmunol.2100637
Baumeier, C., Aleshcheva, G., Harms, D., Gross, U., Hamm, C., Assmus, B., et al. (2022). Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. International Journal of Molecular Sciences 23, 6940. doi: 10.3390/ijms23136940
Buergin, N., Lopez-Ayala, P., Hirsiger, J. R., Mueller, P., Median, D., Glarner, N., et al. (2023). Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail. doi: 10.1002/ejhf.2978
Chemaitelly, H., Ayoub, H. H., AlMukdad, S., Coyle, P., Tang, P., Yassine, H. M., et al. (2022). Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. Nat Commun 13, 3082. doi: 10.1038/s41467-022-30895-3
Chemaitelly, H., Ayoub, H. H., Tang, P., Coyle, P., Yassine, H. M., Thani, A. A. A., et al. (2023). Long-term COVID-19 booster effectiveness by infection history and clinical vulnerability and immune imprinting: a retrospective population-based cohort study. The Lancet Infectious Diseases 23, 816–827. doi: 10.1016/S1473-3099(23)00058-0
Choi, S., Lee, S., Seo, J.-W., Kim, M., Jeon, Y. H., Park, J. H., et al. (2021). Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. Journal of Korean Medical Science 36. doi: 10.3346/jkms.2021.36.e286
Clinical Considerations: Myocarditis after COVID-19 Vaccines | CDC (2023). Available at: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html (Accessed January 25, 2024).
EMA, 2020a. Assessment report Comirnaty Common name: COVID-19 mRNA vaccine (nucleosidemodified) [WWW Document]. accessed 3.14.21. https://www.ema.eu ropa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-repo rt_en.pdf. (2021). Available at: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf
Fertig, T. E., Chitoiu, L., Marta, D. S., Ionescu, V.-S., Cismasiu, V. B., Radu, E., et al. (2022). Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines 10, 1538. doi: 10.3390/biomedicines10071538
Gill, J. R., Tashjian, R., and Duncanson, E. (2022). Autopsy Histopathologic Cardiac Findings in 2 Adolescents Following the Second COVID-19 Vaccine Dose. Archives of Pathology & Laboratory Medicine 146, 925–929. doi: 10.5858/arpa.2021-0435-SA
Hanna, N., Heffes-Doon, A., Lin, X., Manzano De Mejia, C., Botros, B., Gurzenda, E., et al. (2022). Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk. JAMA Pediatrics. doi: 10.1001/jamapediatrics.2022.3581
Hanna, N., Mejia, C. M. D., Heffes-Doon, A., Lin, X., Botros, B., Gurzenda, E., et al. (2023). Biodistribution of mRNA COVID-19 vaccines in human breast milk. eBioMedicine 96. doi: 10.1016/j.ebiom.2023.104800
Hồ, N. T., Hughes, S. G., Ta, V. T., Phan, L. T., Đỗ, Q., Nguyễn, T. V., et al. (2024). Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nat Commun 15, 4081. doi: 10.1038/s41467-024-47905-1
https://phmpt.org/wp-content/uploads/2022/03/125742_S1_M4_4223_185350.pdf (n.d.).
Kingwell, K. (2022). COVID vaccines: “We flew the aeroplane while we were still building it.” Nature Reviews Drug Discovery 21, 872–873. doi: 10.1038/d41573-022-00191-2
Kotsias, F., Cebrian, I., and Alloatti, A. (2019). Antigen processing and presentation. Int Rev Cell Mol Biol 348, 69–121. doi: 10.1016/bs.ircmb.2019.07.005
Mansanguan, S., Charunwatthana, P., Piyaphanee, W., Dechkhajorn, W., Poolcharoen, A., and Mansanguan, C. (2022). Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Tropical Medicine and Infectious Disease 7, 196. doi: 10.3390/tropicalmed7080196
Mörz, M. (2022). A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines 10, 1651. doi: 10.3390/vaccines10101651
Nushida, H., Ito, A., Kurata, H., Umemoto, H., Tokunaga, I., Iseki, H., et al. (2023). A case of fatal multi-organ inflammation following COVID-19 vaccination. Legal Medicine 63, 102244. doi: 10.1016/j.legalmed.2023.102244
Pardi, N., Hogan, M. J., Porter, F. W., and Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17, 261–279. doi: 10.1038/nrd.2017.243
Pezzullo, A. M., Axfors, C., Contopoulos-Ioannidis, D. G., Apostolatos, A., and Ioannidis, J. P. A. (2023). Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environmental Research 216, 114655. doi: 10.1016/j.envres.2022.114655
Polykretis, P. (2022). Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID-19 and the need for biodistribution evaluations. Scandinavian Journal of Immunology 96, e13160. doi: 10.1111/sji.13160
Polykretis, P., Donzelli, A., Lindsay, J. C., Wiseman, D., Kyriakopoulos, A. M., Mörz, M., et al. (2023). Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 56, 2259123. doi: 10.1080/08916934.2023.2259123
Röltgen, K., Nielsen, S. C. A., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., et al. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185, 1025-1040.e14. doi: 10.1016/j.cell.2022.01.018
Sano, S., Yamamoto, M., Kamijima, R., and Sano, H. (2024). SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of repetitive miliaria-like lesions in a woman following mRNA vaccination. The Journal of Dermatology 51, e293–e295. doi: 10.1111/1346-8138.17204
Schwab, C., Domke, L. M., Hartmann, L., Stenzinger, A., Longerich, T., and Schirmacher, P. (2022). Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. doi: 10.1007/s00392-022-02129-5
Shrestha, N. K., Burke, P. C., Nowacki, A. S., Simon, J. F., Hagen, A., and Gordon, S. M. (2023). Effectiveness of the Coronavirus Disease 2019 Bivalent Vaccine. Open Forum Infect Dis 10, ofad209. doi: 10.1093/ofid/ofad209
Yamamoto, M., Kase, M., Sano, H., Kamijima, R., and Sano, S. (2023). Persistent varicella zoster virus infection following mRNA COVID-19 vaccination was associated with the presence of encoded spike protein in the lesion. Journal of Cutaneous Immunology and Allergy 6, 18–23. doi: 10.1002/cia2.12278
Yonker, L. M., Gilboa, T., Ogata, A. F., Senussi, Y., Lazarovits, R., Boribong, B. P., et al. (2021). Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest 131, e149633, 149633. doi: 10.1172/JCI149633
Σύγκρουση τρένων στα Τέμπη: Όλη η Ελλάδα στη φράση “πάμε κι όπου βγει” (2023). Provocateur. Available at: https://www.provocateur.gr/out-about/26767/sygkroysh-trenwn-sta-temph-olh-h-ellada-sth-frash-pame-ki-opoy-bgei/ (Accessed September 26, 2024).
Share this post