Playback speed
×
Share post
Share post at current time
0:00
/
0:00
Transcript
1

Il mio discorso al Parlamento giapponese sulle reazioni infiammatorie autoimmuni causate dai vaccini genetici COVID-19

International Crisis Summit 6, Sessione in Parlamento, 27 settembre 2024
1

Il 27 settembre 2024, ho avuto il grande onore di parlare nel Parlamento giapponese, come parte della Conferenza International Crisis Summit 6, tenutasi a Tokyo, dal 24 al 28 settembre 2024. Insieme agli altri partecipanti al Congresso, siamo stati invitati per informare il pubblico e i legislatori giapponesi sui pericoli dei vaccini genetici contro il COVID-19, nel tentativo di impedire che il vaccino a mRNA ARCT-154 (chiamato Replicon vaccine) venisse introdotto nel sistema sanitario nazionale giapponese a ottobre.

Il mio discorso si è incentrato sulle reazioni infiammatorie autoimmuni causate dai vaccini genetici contro il COVID-19, dato che negli ultimi tre anni ho lavorato estensivamente sul tema e dato che sono stato probabilmente il primo a ipotizzare il meccanismo di autoimmunità causato dai vaccini genetici, cercando di allertare la comunità scientifica sulla necessità di accurati studi di biodistribuzione.

Data l’importanza dell’evento, ho voluto includere riferimenti bibliografici in ogni frase pronunciata, al fine di supportare ogni concetto con dati tratti da studi scientifici sottoposti a revisione paritaria. Inoltre, poiché avrei depositato il documento al Parlamento giapponese, ho deciso di leggerne ogni parola per trasparenza.

Avrei potuto passare numerose ore presentando i risultati estremamente preoccupanti degli studi scientifici che dimostrano in modo schiacciante il rapporto rischio/beneficio gravemente sfavorevole nei confronti dei vaccini genetici contro il COVID-19, ma a ogni relatore erano stati concessi 10-12 minuti…

Share

Di seguito, ho riportato la bibliografia citata nel video:

Aarstad, J., and Kvitastein, O. A. (2023). Is There a Link between the 2021 COVID-19 Vaccination Uptake in Europe and 2022 Excess All-Cause Mortality? Asian Pacific Journal of Health Sciences 10, 25–31. doi: 10.21276/apjhs.2023.10.1.6

Bansal, S., Perincheri, S., Fleming, T., Poulson, C., Tiffany, B., Bremner, R. M., et al. (2021). Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by BNT162b2 (Pfizer–BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines. The Journal of Immunology 207, 2405–2410. doi: 10.4049/jimmunol.2100637

Baumeier, C., Aleshcheva, G., Harms, D., Gross, U., Hamm, C., Assmus, B., et al. (2022). Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. International Journal of Molecular Sciences 23, 6940. doi: 10.3390/ijms23136940

Buergin, N., Lopez-Ayala, P., Hirsiger, J. R., Mueller, P., Median, D., Glarner, N., et al. (2023). Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail. doi: 10.1002/ejhf.2978

Chemaitelly, H., Ayoub, H. H., AlMukdad, S., Coyle, P., Tang, P., Yassine, H. M., et al. (2022). Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. Nat Commun 13, 3082. doi: 10.1038/s41467-022-30895-3

Chemaitelly, H., Ayoub, H. H., Tang, P., Coyle, P., Yassine, H. M., Thani, A. A. A., et al. (2023). Long-term COVID-19 booster effectiveness by infection history and clinical vulnerability and immune imprinting: a retrospective population-based cohort study. The Lancet Infectious Diseases 23, 816–827. doi: 10.1016/S1473-3099(23)00058-0

Choi, S., Lee, S., Seo, J.-W., Kim, M., Jeon, Y. H., Park, J. H., et al. (2021). Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. Journal of Korean Medical Science 36. doi: 10.3346/jkms.2021.36.e286

Clinical Considerations: Myocarditis after COVID-19 Vaccines | CDC (2023). Available at: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html (Accessed January 25, 2024).

EMA, 2020a. Assessment report Comirnaty Common name: COVID-19 mRNA vaccine (nucleosidemodified) [WWW Document]. accessed 3.14.21. https://www.ema.eu ropa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-repo rt_en.pdf. (2021). Available at: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

Fertig, T. E., Chitoiu, L., Marta, D. S., Ionescu, V.-S., Cismasiu, V. B., Radu, E., et al. (2022). Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines 10, 1538. doi: 10.3390/biomedicines10071538

Gill, J. R., Tashjian, R., and Duncanson, E. (2022). Autopsy Histopathologic Cardiac Findings in 2 Adolescents Following the Second COVID-19 Vaccine Dose. Archives of Pathology & Laboratory Medicine 146, 925–929. doi: 10.5858/arpa.2021-0435-SA

Hanna, N., Heffes-Doon, A., Lin, X., Manzano De Mejia, C., Botros, B., Gurzenda, E., et al. (2022). Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk. JAMA Pediatrics. doi: 10.1001/jamapediatrics.2022.3581

Hanna, N., Mejia, C. M. D., Heffes-Doon, A., Lin, X., Botros, B., Gurzenda, E., et al. (2023). Biodistribution of mRNA COVID-19 vaccines in human breast milk. eBioMedicine 96. doi: 10.1016/j.ebiom.2023.104800

Hồ, N. T., Hughes, S. G., Ta, V. T., Phan, L. T., Đỗ, Q., Nguyễn, T. V., et al. (2024). Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nat Commun 15, 4081. doi: 10.1038/s41467-024-47905-1

https://phmpt.org/wp-content/uploads/2022/03/125742_S1_M4_4223_185350.pdf (n.d.).

Kingwell, K. (2022). COVID vaccines: “We flew the aeroplane while we were still building it.” Nature Reviews Drug Discovery 21, 872–873. doi: 10.1038/d41573-022-00191-2

Kotsias, F., Cebrian, I., and Alloatti, A. (2019). Antigen processing and presentation. Int Rev Cell Mol Biol 348, 69–121. doi: 10.1016/bs.ircmb.2019.07.005

Mansanguan, S., Charunwatthana, P., Piyaphanee, W., Dechkhajorn, W., Poolcharoen, A., and Mansanguan, C. (2022). Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Tropical Medicine and Infectious Disease 7, 196. doi: 10.3390/tropicalmed7080196

Mörz, M. (2022). A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA Vaccination against COVID-19. Vaccines 10, 1651. doi: 10.3390/vaccines10101651

Nushida, H., Ito, A., Kurata, H., Umemoto, H., Tokunaga, I., Iseki, H., et al. (2023). A case of fatal multi-organ inflammation following COVID-19 vaccination. Legal Medicine 63, 102244. doi: 10.1016/j.legalmed.2023.102244

Pardi, N., Hogan, M. J., Porter, F. W., and Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17, 261–279. doi: 10.1038/nrd.2017.243

Pezzullo, A. M., Axfors, C., Contopoulos-Ioannidis, D. G., Apostolatos, A., and Ioannidis, J. P. A. (2023). Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environmental Research 216, 114655. doi: 10.1016/j.envres.2022.114655

Polykretis, P. (2022). Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID-19 and the need for biodistribution evaluations. Scandinavian Journal of Immunology 96, e13160. doi: 10.1111/sji.13160

Polykretis, P., Donzelli, A., Lindsay, J. C., Wiseman, D., Kyriakopoulos, A. M., Mörz, M., et al. (2023). Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity 56, 2259123. doi: 10.1080/08916934.2023.2259123

Röltgen, K., Nielsen, S. C. A., Silva, O., Younes, S. F., Zaslavsky, M., Costales, C., et al. (2022). Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 185, 1025-1040.e14. doi: 10.1016/j.cell.2022.01.018

Sano, S., Yamamoto, M., Kamijima, R., and Sano, H. (2024). SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of repetitive miliaria-like lesions in a woman following mRNA vaccination. The Journal of Dermatology 51, e293–e295. doi: 10.1111/1346-8138.17204

Schwab, C., Domke, L. M., Hartmann, L., Stenzinger, A., Longerich, T., and Schirmacher, P. (2022). Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. doi: 10.1007/s00392-022-02129-5

Shrestha, N. K., Burke, P. C., Nowacki, A. S., Simon, J. F., Hagen, A., and Gordon, S. M. (2023). Effectiveness of the Coronavirus Disease 2019 Bivalent Vaccine. Open Forum Infect Dis 10, ofad209. doi: 10.1093/ofid/ofad209

Yamamoto, M., Kase, M., Sano, H., Kamijima, R., and Sano, S. (2023). Persistent varicella zoster virus infection following mRNA COVID-19 vaccination was associated with the presence of encoded spike protein in the lesion. Journal of Cutaneous Immunology and Allergy 6, 18–23. doi: 10.1002/cia2.12278

Yonker, L. M., Gilboa, T., Ogata, A. F., Senussi, Y., Lazarovits, R., Boribong, B. P., et al. (2021). Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest 131, e149633, 149633. doi: 10.1172/JCI149633

Σύγκρουση τρένων στα Τέμπη: Όλη η Ελλάδα στη φράση “πάμε κι όπου βγει” (2023). Provocateur. Available at: https://www.provocateur.gr/out-about/26767/sygkroysh-trenwn-sta-temph-olh-h-ellada-sth-frash-pame-ki-opoy-bgei/ (Accessed September 26, 2024).

Discussion about this podcast